The vector-valued extension of the famous Witsenhausen counterexample setup is studied where the encoder, i.e. the first decision maker, non-causally knows and encodes the i.i.d. state sequence and the decoder, i.e. the second decision maker, causally estimates the interim state. The coding scheme is transferred from the finite alphabet coordination problem for which it is proved to be optimal. The extension to the Gaussian setup is based on a non-standard weak typicality approach and requires a careful average estimation error analysis since the interim state is estimated by the decoder. We provide a single-letter expression that characterizes the optimal trade-off between the Witsenhausen power cost and estimation cost. The two auxiliary random variables improve the communication with the decoder, while performing the dual role of the channel input, which also controls the state of the system. Interestingly, we show that a pair of discrete and continuous auxiliary random variables, outperforms both Witsenhausen two point strategy and the best affine policies. The optimal choice of random variables remains unknown.
翻译:著名的 Witsenhausen 反Example 设置的矢量估价扩展值, 是在以下情况下研究的: 编码器, 即第一个决策器, 非因果知情并编码 i. d. state 序列和解码器, 即第二个决策器, 因果估算临时状态。 编码方案是从有限字母协调问题转换出来的, 事实证明, 这个问题是最佳的。 高斯设置的扩展是基于非标准薄弱的典型化方法, 需要仔细平均估计错误分析, 因为临时状态是由解码器估算的。 我们提供了一个单字母表达式, 描述维特豪斯电源成本和估算成本之间的最佳交易。 两个辅助随机变量改善了与解码器的通信, 同时发挥频道输入的双重作用, 同时控制系统状态。 有趣的是, 我们显示一对离散和连续的随机变量, 超越了维特森斯南的两点策略和最佳密系政策。 最佳随机变量的选择是未知的。