Parameter estimation in statistics and system identification relies on data that may contain sensitive information. To protect this sensitive information, the notion of \emph{differential privacy} (DP) has been proposed, which enforces confidentiality by introducing randomization in the estimates. Standard algorithms for differentially private estimation are based on adding an appropriate amount of noise to the output of a traditional point estimation method. This leads to an accuracy-privacy trade off, as adding more noise reduces the accuracy while increasing privacy. In this paper, we propose a new Unified Bayes Private Point (UBaPP) approach to Bayes point estimation of the unknown parameters of a data generating mechanism under a DP constraint, that achieves a better accuracy-privacy trade off than traditional approaches. We verify the performance of our approach on a simple numerical example.
翻译:统计和系统识别参数的估算取决于可能包含敏感信息的数据。 为保护这一敏感信息,已经提出了“ / / / { 区分隐私” (DP) 的概念,该概念通过在估算中引入随机化而加强保密性。 差异性私人估算的标准算法基于在传统点估测方法的产出中增加适当数量的噪音。这导致精确- 隐私交换,因为增加更多的噪音会降低准确性,同时增加隐私。 在本文中,我们提议对Bayes点采用新的“UBAPP ” 方法,根据一种DP限制对数据生成机制的未知参数进行点估计,从而实现比传统方法更好的准确- 基本交易。 我们用一个简单的数字实例来核查我们的方法的绩效。