We consider distributed parameter estimation using interactive protocols subject to local information constraints such as bandwidth limitations, local differential privacy, and restricted measurements. We provide a unified framework enabling us to derive a variety of (tight) minimax lower bounds for different parametric families of distributions, both continuous and discrete, under any $\ell_p$ loss. Our lower bound framework is versatile and yields "plug-and-play" bounds that are widely applicable to a large range of estimation problems, and, for the prototypical case of the Gaussian family, circumvents limitations of previous techniques. In particular, our approach recovers bounds obtained using data processing inequalities and Cram\'er--Rao bounds, two other alternative approaches for proving lower bounds in our setting of interest. Further, for the families considered, we complement our lower bounds with matching upper bounds.
翻译:我们考虑使用受带宽限制、地方差异隐私和限制性测量等当地信息限制的互动式协议进行分布参数估计。我们提供了一个统一的框架,使我们能够为连续和离散的分布线不同参数组获得各种(紧)小尺寸下限,在任何$$$$美元损失下,连续和离散的分布线组。我们较低的约束框架具有多功能性,产生了广泛适用于大量估算问题的“插头和玩耍”界限,对于高山家族的典型案例,我们的方法避开了以往技术的局限性。特别是,我们的方法恢复了利用数据处理不平等和Cram\'er-Rao界限获得的界限,这是证明我们利益设定中较低界限的另外两种替代方法。此外,对于所考虑的家庭,我们用匹配的上限来补充我们较低的界限。