There is a long-standing debate in the statistical, epidemiological and econometric fields as to whether nonparametric estimation that uses data-adaptive methods, like machine learning algorithms in model fitting, confer any meaningful advantage over simpler, parametric approaches in real-world, finite sample estimation of causal effects. We address the question: when trying to estimate the effect of a treatment on an outcome, across a universe of reasonable data distributions, how much does the choice of nonparametric vs.~parametric estimation matter? Instead of answering this question with simulations that reflect a few chosen data scenarios, we propose a novel approach evaluating performance across thousands of data-generating mechanisms drawn from non-parametric models with semi-informative priors. We call this approach a Universal Monte-Carlo Simulation. We compare performance of estimating the average treatment effect across two parametric estimators (a g-computation estimator that uses a parametric outcome model and an inverse probability of treatment weighted estimator) and two nonparametric estimators (a tree-based estimator and a targeted minimum loss-based estimator that uses an ensemble of machine learning algorithms in model fitting). We summarize estimator performance in terms of bias, confidence interval coverage, and mean squared error. We find that the nonparametric estimators nearly always outperform the parametric estimators with the exception of having similar performance in terms of bias and slightly worse performance in terms of coverage under the smallest sample size of N=100.


翻译:统计、流行病学和计量经济学领域存在长期争论,即使用数据适应方法的非参数估计,如模型安装中的机器学习算法,是否给现实世界中较简单、准参数的因果关系抽样估计带来任何有意义的优势。我们处理的问题是:在试图估计治疗对结果的影响时,在合理数据分布的宇宙中,如何选择非参数对参数对参数估测问题?我们建议采用一种新颖的方法,而不是用模拟来回答这一问题,这种模拟反映少数选择的数据假设,来评价从非参数模型中提取的数千个数据生成机制的性能。我们将此方法称为通用蒙特-卡洛模拟。我们比较了两个参数估计结果对结果的影响(一个参数估测标准,使用准结果模型和加权估测结果偏差的反差概率)的性能;两个非参数(一个基于树木的估测标准,一个基于非参数的生成数据的机制,从半增强指数的模型中提取出。我们比较了两个参数中平均处理效果的性能估计效果的性能的性能,一个是使用以最差的性偏差的性估测算模型,一个数值,一个是以精确的性测测测测测测测测结果的精度的性数值。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员