Machine Learning models face increased concerns regarding the storage of personal user data and adverse impacts of corrupted data like backdoors or systematic bias. Machine Unlearning can address these by allowing post-hoc deletion of affected training data from a learned model. Achieving this task exactly is computationally expensive; consequently, recent works have proposed inexact unlearning algorithms to solve this approximately as well as evaluation methods to test the effectiveness of these algorithms. In this work, we first outline some necessary criteria for evaluation methods and show no existing evaluation satisfies them all. Then, we design a stronger black-box evaluation method called the Interclass Confusion (IC) test which adversarially manipulates data during training to detect the insufficiency of unlearning procedures. We also propose two analytically motivated baseline methods~(EU-k and CF-k) which outperform several popular inexact unlearning methods. Overall, we demonstrate how adversarial evaluation strategies can help in analyzing various unlearning phenomena which can guide the development of stronger unlearning algorithms.


翻译:机器学习模型在个人用户数据的储存以及诸如后门或系统性偏差等腐败数据的不利影响方面日益受到关注。 机器不学习可以通过允许从一个已学模式中删除受影响的培训数据来解决这些问题。 完成这一任务在计算上是昂贵的; 因此,最近的工作提议了不完全的不学习算法来大致解决这个问题, 以及用来测试这些算法有效性的评价方法。 在这项工作中, 我们首先概述了一些必要的评价方法标准, 并且没有显示任何现有的评价都满足这些方法。 然后, 我们设计了一个更强大的黑盒评价方法, 称为“ 跨类融合(IC) 测试 ”, 这种方法在培训期间对数据进行对立操纵, 以检测不学习程序不足的情况。 我们还提出了两种具有分析动机的基线方法 ~ ( EU-k 和 CF-k), 这种方法超越了几种流行的不学习方法。 总之, 我们展示了对抗性评价战略如何帮助分析各种不学习现象, 从而指导更强的不学习算法的发展。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
45+阅读 · 2019年12月20日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员