In the past few decades, many multiobjective evolutionary optimization algorithms (MOEAs) have been proposed to find a finite set of approximate Pareto solutions for a given problem in a single run, each with its own structure. However, in many real-world applications, it could be desirable to have structure constraints on the entire optimal solution set, which define the patterns shared among all solutions. The current population-based MOEAs cannot properly handle such requirements. In this work, we make the first attempt to incorporate the structure constraints into the whole solution set by a single Pareto set model, which can be efficiently learned by a simple evolutionary stochastic optimization method. With our proposed method, the decision-makers can flexibly trade off the Pareto optimality with preferred structures among all solutions, which is not supported by previous MOEAs. A set of experiments on benchmark test suites and real-world application problems fully demonstrates the efficiency of our proposed method.
翻译:暂无翻译