Algebraic multigrid (AMG) is known to be an effective solver for many sparse symmetric positive definite (SPD) linear systems. For SPD systems, the convergence theory of AMG is well-understood in terms of the $A$-norm but in a nonsymmetric setting such an energy norm is non-existent. For this reason, convergence of AMG for nonsymmetric systems of equations remains an open area of research. Existing nonsymmetric AMG algorithms in this setting mostly rely on heuristics motivated by SPD convergence theory. In the SPD setting, the classical form of optimal AMG interpolation provides a useful insight in determining the two grid convergence rate of the method. In this work, we discuss a generalization of the optimal AMG convergence theory targeting nonsymmetric problems by constructing a $2\times 2$ block symmetric indefinite system so that the Petrov-Galerkin AMG process for the nonsymmetric matrix $A$ can be recast as a Galerkin AMG process for a symmetric indefinite system. We show that using this generalization of the optimal interpolation theory, one can obtain the same identity for the two-grid convergence rate as that derived in the SPD setting for optimal interpolation. We also provide supporting numerical results for the convergence result and nonsymmetric advection-diffusion problems.
翻译:暂无翻译