The pipeline of current robotic pick-and-place methods typically consists of several stages: grasp pose detection, finding inverse kinematic solutions for the detected poses, planning a collision-free trajectory, and then executing the open-loop trajectory to the grasp pose with a low-level tracking controller. While these grasping methods have shown good performance on grasping static objects on a table-top, the problem of grasping dynamic objects in constrained environments remains an open problem. We present Neural Motion Fields, a novel object representation which encodes both object point clouds and the relative task trajectories as an implicit value function parameterized by a neural network. This object-centric representation models a continuous distribution over the SE(3) space and allows us to perform grasping reactively by leveraging sampling-based MPC to optimize this value function.
翻译:现有机器人选取和定位方法的管道通常由几个阶段组成: 抓取( 抓取) 发现( 发现), 找到反动动向( 发现), 规划一个无碰撞轨迹, 然后用低级别跟踪控制器将开路轨执行到( 抓取) 。 虽然这些抓取( 抓取) 方法显示在桌面上抓取静态物体方面表现良好, 但是在受限制的环境中捕捉动态物体的问题仍是一个尚未解决的问题 。 我们展示了神经运动场, 这是一种新颖的物体代表, 将对象点云和相对任务轨迹都编码为神经网络参数的隐含值函数。 这种以物体为中心的代表模型持续分布在SE(3) 空间上, 使我们能够通过利用基于取样的MPC来优化该值功能, 进行被动地抓住。