Generative moment matching networks (GMMNs) are introduced for generating quasi-random samples from multivariate models with any underlying copula in order to compute estimates under variance reduction. So far, quasi-random sampling for multivariate distributions required a careful design, exploiting specific properties (such as conditional distributions) of the implied parametric copula or the underlying quasi-Monte Carlo (QMC) point set, and was only tractable for a small number of models. Utilizing GMMNs allows one to construct quasi-random samples for a much larger variety of multivariate distributions without such restrictions, including empirical ones from real data with dependence structures not well captured by parametric copulas. Once trained on pseudo-random samples from a parametric model or on real data, these neural networks only require a multivariate standard uniform randomized QMC point set as input and are thus fast in estimating expectations of interest under dependence with variance reduction. Numerical examples are considered to demonstrate the approach, including applications inspired by risk management practice. All results are reproducible with the demos GMMN_QMC_paper, GMMN_QMC_data and GMMN_QMC_timings as part of the R package gnn.


翻译:引入了生成时间匹配网络(GMMNs)以生成来自多种变式模型的准随机样本,并使用任何基本千叶草原,以计算差异减少的估计数。到目前为止,对多种变式分布的准随机抽样需要仔细设计,利用隐含的参数焦云或基本准蒙卡罗(QMC)点的特定特性(如有条件分布),仅对少数模型可移植。利用GMMMMMs, 包括受风险管理实践启发的应用,可以为更多种类的多变式分布建立准随机样本,包括来自依赖性结构实际数据的经验样本,而依赖性结构没有被参数焦炭很好地捕获。一旦从参数模型或实际数据中进行假随机抽样培训,这些神经网络只需要作为投入而采用多变标准的统一随机QMC点,从而在估计依赖性下降后的利息预期方面速度很快。Nualic的例子被视为展示了这一方法,包括受风险管理实践启发的应用。所有结果都与GMNMM_MC_GM_GM_M_GM_M_Adas Parts and GMZ_GM_GMN_ datadal_ data可以与GMMS_ data和GMZM_GMX_D_D_D_ data作为GM_ data作为GM_ data和GMZM_DM_DM_D_D_D_ data和GM_ datads作为部分的一部分重新推广。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
61+阅读 · 2020年3月4日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
3+阅读 · 2019年10月31日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员