Generative moment matching networks (GMMNs) are introduced for generating quasi-random samples from multivariate models with any underlying copula in order to compute estimates under variance reduction. So far, quasi-random sampling for multivariate distributions required a careful design, exploiting specific properties (such as conditional distributions) of the implied parametric copula or the underlying quasi-Monte Carlo (QMC) point set, and was only tractable for a small number of models. Utilizing GMMNs allows one to construct quasi-random samples for a much larger variety of multivariate distributions without such restrictions, including empirical ones from real data with dependence structures not well captured by parametric copulas. Once trained on pseudo-random samples from a parametric model or on real data, these neural networks only require a multivariate standard uniform randomized QMC point set as input and are thus fast in estimating expectations of interest under dependence with variance reduction. Numerical examples are considered to demonstrate the approach, including applications inspired by risk management practice. All results are reproducible with the demos GMMN_QMC_paper, GMMN_QMC_data and GMMN_QMC_timings as part of the R package gnn.
翻译:引入了生成时间匹配网络(GMMNs)以生成来自多种变式模型的准随机样本,并使用任何基本千叶草原,以计算差异减少的估计数。到目前为止,对多种变式分布的准随机抽样需要仔细设计,利用隐含的参数焦云或基本准蒙卡罗(QMC)点的特定特性(如有条件分布),仅对少数模型可移植。利用GMMMMMs, 包括受风险管理实践启发的应用,可以为更多种类的多变式分布建立准随机样本,包括来自依赖性结构实际数据的经验样本,而依赖性结构没有被参数焦炭很好地捕获。一旦从参数模型或实际数据中进行假随机抽样培训,这些神经网络只需要作为投入而采用多变标准的统一随机QMC点,从而在估计依赖性下降后的利息预期方面速度很快。Nualic的例子被视为展示了这一方法,包括受风险管理实践启发的应用。所有结果都与GMNMM_MC_GM_GM_M_GM_M_Adas Parts and GMZ_GM_GMN_ datadal_ data可以与GMMS_ data和GMZM_GMX_D_D_D_ data作为GM_ data作为GM_ data和GMZM_DM_DM_D_D_D_ data和GM_ datads作为部分的一部分重新推广。