Product bundling is a common selling mechanism used in online retailing. To set profitable bundle prices, the seller needs to learn consumer preferences from the transaction data. When customers purchase bundles or multiple products, classical methods such as discrete choice models cannot be used to estimate customers' valuations. In this paper, we propose an approach to learn the distribution of consumers' valuations toward the products using bundle sales data. The approach reduces it to an estimation problem where the samples are censored by polyhedral regions. Using the EM algorithm and Monte Carlo simulation, our approach can recover the distribution of consumers' valuations. The framework allows for unobserved no-purchases and clustered market segments. We provide theoretical results on the identifiability of the probability model and the convergence of the EM algorithm. The performance of the approach is also demonstrated numerically.
翻译:产品捆绑是在线零售中使用的一种常见的销售机制。 为了设定盈利的捆绑价格,卖方需要从交易数据中学习消费者的偏好。 当客户购买捆绑或多种产品时,不能使用离散选择模型等传统方法来估计客户的估值。 在本文中,我们提出一种方法来学习消费者对产品估值的分布情况,使用捆绑销售数据。这种方法将它降低到一个估算问题,即样品受多面区域检查。使用EM算法和Monte Carlo模拟,我们的方法可以恢复消费者估值的分布。框架允许不见的不购买和集成市场部分。我们提供了概率模型的可识别性和EM算法的趋同性方面的理论结果。 这种方法的绩效也得到了数字化的证明。