We analyze the Knowledge Neurons framework for the attribution of factual and relational knowledge to particular neurons in the transformer network. We use a 12-layer multi-lingual BERT model for our experiments. Our study reveals various interesting phenomena. We observe that mostly factual knowledge can be attributed to middle and higher layers of the network($\ge 6$). Further analysis reveals that the middle layers($6-9$) are mostly responsible for relational information, which is further refined into actual factual knowledge or the "correct answer" in the last few layers($10-12$). Our experiments also show that the model handles prompts in different languages, but representing the same fact, similarly, providing further evidence for effectiveness of multi-lingual pre-training. Applying the attribution scheme for grammatical knowledge, we find that grammatical knowledge is far more dispersed among the neurons than factual knowledge.
翻译:我们分析了将事实知识和关联知识归属于变压器网络中特定神经元的知识神经元的知识神经元框架。我们用12层多语言BERT模型进行实验。我们的研究揭示了各种有趣的现象。我们发现,大部分事实知识可归因于网络的中层和上层($\Ge 6美元 )。进一步的分析显示,中层($6-9美元)主要负责关系信息,在最后几层($10-12美元)中,这种信息被进一步提炼为实际知识或“正确答案 ” 。我们的实验还表明,模型处理的是不同语言的提示,但同样地代表了同一事实,为多语言预培训的有效性提供了进一步的证据。应用语法知识的属性计划,我们发现语法知识比事实知识在神经元中更加分散。