Designing neural networks with bounded Lipschitz constant is a promising way to obtain certifiably robust classifiers against adversarial examples. However, the relevant progress for the important $\ell_\infty$ perturbation setting is rather limited, and a principled understanding of how to design expressive $\ell_\infty$ Lipschitz networks is still lacking. In this paper, we bridge the gap by studying certified $\ell_\infty$ robustness from a novel perspective of representing Boolean functions. We derive two fundamental impossibility results that hold for any standard Lipschitz network: one for robust classification on finite datasets, and the other for Lipschitz function approximation. These results identify that networks built upon norm-bounded affine layers and Lipschitz activations intrinsically lose expressive power even in the two-dimensional case, and shed light on how recently proposed Lipschitz networks (e.g., GroupSort and $\ell_\infty$-distance nets) bypass these impossibilities by leveraging order statistic functions. Finally, based on these insights, we develop a unified Lipschitz network that generalizes prior works, and design a practical version that can be efficiently trained (making certified robust training free). Extensive experiments show that our approach is scalable, efficient, and consistently yields better certified robustness across multiple datasets and perturbation radii than prior Lipschitz networks.
翻译:设计有约束性利普申茨常数的神经网络是一个很有希望的方法,可以让任何标准的利普申茨网络获得可靠的可靠分类数据,但是,重要的美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/利普施茨网络的相关进展相当有限,而且仍然缺乏关于如何设计以利普施茨网络为主的表达力/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元网络,从而弥补了这一差距。我们通过利用任何标准的利普施茨网络,取得了两种基本不可能的结果:一种是对有限的数据集进行稳健分类,另一种是利普西茨功能接近。这些结果表明,在受规范约束的亲吻层和利普申茨网络启动的网络在本质上丧失了表达力力力,即使在两维维的案例中,我们最近提出的利普施茨网络(如GroupSortSortiveSix)如何绕过这些不易懂统计功能功能。最后,我们开发了一种统一的、经过验证的、经过验证的、经过验证的、经过验证的多式、经过验证的、经过验证的、经过验证的、经过验证的、经过验证的、经过验证的、经过验证的多式、经过验证的、经过验证的、经过验证的、经过验证的、经过验证的、经过验证的、经过验证的、经过验证的、经过验证的、经过验证的、经过验证的、经过验证的多式、经过验证的、经过验证的多式的版本的、经过验证的版本的、经过验证的、经过验证的、经过验证的、经过验证的、经过验证的版本的、经过验证的、经过验证的版本的、经过验证的、经过验证的多式的版本的版本的版本的版本的多式的版本的版本的网络,可以改进的版本的、经过验证的版本的版本的、经过验证的多式的版本的版本的版本的版本的版本的、经过验证的、经过的、经过的、经过的、经过的、经过验证的多式的版本的版本的、经过验证的版本的版本的版本的版本的版本的版本的版本的版本的流基的版本的