Rare genetic disorders affect more than 6% of the global population. Reaching a diagnosis is challenging because rare disorders are very diverse. Many disorders have recognizable facial features that are hints for clinicians to diagnose patients. Previous work, such as GestaltMatcher, utilized representation vectors produced by a DCNN similar to AlexNet to match patients in high-dimensional feature space to support "unseen" ultra-rare disorders. However, the architecture and dataset used for transfer learning in GestaltMatcher have become outdated. Moreover, a way to train the model for generating better representation vectors for unseen ultra-rare disorders has not yet been studied. Because of the overall scarcity of patients with ultra-rare disorders, it is infeasible to directly train a model on them. Therefore, we first analyzed the influence of replacing GestaltMatcher DCNN with a state-of-the-art face recognition approach, iResNet with ArcFace. Additionally, we experimented with different face recognition datasets for transfer learning. Furthermore, we proposed test-time augmentation, and model ensembles that mix general face verification models and models specific for verifying disorders to improve the disorder verification accuracy of unseen ultra-rare disorders. Our proposed ensemble model achieves state-of-the-art performance on both seen and unseen disorders.
翻译:罕见基因障碍影响全球人口的6%以上。 进行诊断具有挑战性, 因为罕见的疾病非常多样。 许多疾病具有可识别的面部特征, 是临床医生诊断病人的提示。 先前的工作, 如 GestaltMatcher, 使用一个类似于 AlexNet 的DCNN 生成的代言矢量, 将高维特位空间的患者匹配为“ 看不见” 超光谱障碍。 然而, GestaltMatcher 中用于转移学习的架构和数据集已经过时。 此外, 我们实验了用于转移学习的不同面部识别数据集。 此外, 我们提议测试- 时间增强, 和模型封建模型, 用于分析超光谱障碍患者的总体缺乏, 因此, 直接培训一个模型是行不通的。 因此, 我们首先分析了将GestaltMatcher DCNN 替换为最先进的面部识别方法( iResNet with ArcFace) 的影响。 此外, 我们提议了用于转移学习的不同面部识别数据集的模型。 此外, 我们提议测试- 增强测试- 和模型封装的模型, 直接测试- 测试- 测试- 测试- 和透视系统障碍测试- 测试- 测试- 常规测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 常规障碍的常规障碍的常规障碍的常规障碍的模型- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试- 测试-