Type 2 Diabetes is a fast-growing, chronic metabolic disorder due to imbalanced insulin activity.The motion of this research is a comparative study of seven machine learning classifiers and an artificial neural network method to prognosticate the detection and treatment of diabetes with high accuracy,in order to identify and treat diabetes patients at an early age.Our training and test dataset is an accumulation of 9483 diabetes patients information.The training dataset is large enough to negate overfitting and provide for highly accurate test performance.We use performance measures such as accuracy and precision to find out the best algorithm deep ANN which outperforms with 95.14% accuracy among all other tested machine learning classifiers.We hope our high-performing model can be used by hospitals to predict diabetes and drive research into more accurate prediction models.
翻译:2型糖尿病是一种快速增长的慢性代谢障碍,原因是胰岛素活动不平衡。 本研究的动向是对7个机器学习分类和人工神经网络方法进行比较研究,以便以高精度预测糖尿病的检测和治疗,从而在早期发现和治疗糖尿病患者。我们的培训和测试数据集积累了9483名糖尿病患者的信息。 培训数据集足够大,足以抵消过度适应和提供高度准确的测试性能。 我们使用精确度和精确度等性能衡量标准来找出在所有其他测试机器学习分类中高于95.14%精度的最佳算法深度ANN。 我们希望我们的高性能模型能够被医院用来预测糖尿病,推动研究更准确的预测模型。