Estimating the free energy, as well as other thermodynamic observables, is a key task in lattice field theories. Recently, it has been pointed out that deep generative models can be used in this context [1]. Crucially, these models allow for the direct estimation of the free energy at a given point in parameter space. This is in contrast to existing methods based on Markov chains which generically require integration through parameter space. In this contribution, we will review this novel machine-learning-based estimation method. We will in detail discuss the issue of mode collapse and outline mitigation techniques which are particularly suited for applications at finite temperature.
翻译:估计自由能源以及其他热力观察是拉蒂斯实地理论中的一项关键任务。最近,有人指出,在这方面可以使用深重的基因模型[1]。至关重要的是,这些模型允许在参数空间的某个特定点直接估计自由能源。这与基于Markov链系的现有方法形成对照,后者通常需要通过参数空间进行整合。在这个贡献中,我们将审查这种基于机器学习的新颖的估算方法。我们将详细讨论模式崩溃问题,并概述特别适合在有限温度下应用的减缓技术。