This paper aims for a potential architectural improvement for multilingual learning and asks: Can different tasks from different languages be modeled in a monolithic framework, i.e. without any task/language-specific module? The benefit of achieving this could open new doors for future multilingual research, including allowing systems trained on low resources to be further assisted by other languages as well as other tasks. We approach this goal by developing a learning framework named Polyglot Prompting to exploit prompting methods for learning a unified semantic space for different languages and tasks with multilingual prompt engineering. We performed a comprehensive evaluation of 6 tasks, namely topic classification, sentiment classification, named entity recognition, question answering, natural language inference, and summarization, covering 24 datasets and 49 languages. The experimental results demonstrated the efficacy of multilingual multitask prompt-based learning and led to inspiring observations. We also present an interpretable multilingual evaluation methodology and show how the proposed framework, multilingual multitask prompt training, works. We release all datasets prompted in the best setting and code.
翻译:本文旨在为多语种学习提供潜在的建筑改进,并询问:不同语言的不同任务能否在单一框架(即没有任何任务/语言特定模块)中建模?实现这一点的好处可以为今后的多语种研究打开新的大门,包括允许低资源培训系统得到其他语言的进一步协助以及其他任务。我们通过开发一个名为 " 聚球激励 " 的学习框架来实现这一目标,以利用快速方法为不同语言和多语种快速工程任务学习统一的语义空间。我们全面评估了6项任务,即专题分类、情绪分类、名称实体识别、问题回答、自然语言推断和总和,涵盖24个数据集和49个语言。实验结果显示了多语种的快速学习的功效,并促成了令人鼓舞的观察。我们还介绍了一种可解释的多语种评价方法,并展示了拟议框架、多语种快速培训、工作方式。我们在最佳设置和代码中发布了所有驱动的数据集。