As a key component of talking face generation, lip movements generation determines the naturalness and coherence of the generated talking face video. Prior literature mainly focuses on speech-to-lip generation while there is a paucity in text-to-lip (T2L) generation. T2L is a challenging task and existing end-to-end works depend on the attention mechanism and autoregressive (AR) decoding manner. However, the AR decoding manner generates current lip frame conditioned on frames generated previously, which inherently hinders the inference speed, and also has a detrimental effect on the quality of generated lip frames due to error propagation. This encourages the research of parallel T2L generation. In this work, we propose a novel parallel decoding model for high-speed and high-quality text-to-lip generation (HH-T2L). Specifically, we predict the duration of the encoded linguistic features and model the target lip frames conditioned on the encoded linguistic features with their duration in a non-autoregressive manner. Furthermore, we incorporate the structural similarity index loss and adversarial learning to improve perceptual quality of generated lip frames and alleviate the blurry prediction problem. Extensive experiments conducted on GRID and TCD-TIMIT datasets show that 1) HH-T2L generates lip movements with competitive quality compared with the state-of-the-art AR T2L model DualLip and exceeds the baseline AR model TransformerT2L by a notable margin benefiting from the mitigation of the error propagation problem; and 2) exhibits distinct superiority in inference speed (an average speedup of 19$\times$ than DualLip on TCD-TIMIT).
翻译:作为谈话面部生成的关键组成部分,嘴唇运动的生成决定了生成面部视频的自然性和一致性。 先前的文献主要侧重于语音到翻版生成, 而同时文本到翻版( T2L) 生成却缺乏。 T2L 是一项具有挑战性的任务, 而现有的端到端工作取决于关注机制和自动递归( AR) 解码方式。 然而, AR 解码方式生成了以先前生成的框架为条件的当前唇框, 这必然妨碍推导速度, 也对因错误传播而生成的唇框的质量产生有害影响。 这鼓励了对平行的 T2L 生成的语音到翻版生成的研究。 在这项工作中,我们提出了一个新的平行解码模式, 高速和高品质的文本到页工作取决于关注机制和自动递归码( AR) 解码解码方式。 然而, ARDBS 解码语言模型的长度取决于先前生成的语言模型, 它的长度必然妨碍推导速度速度, 并且对由于错误传播而生成的嘴边框框架质量质量进行结构相似的丢失和对质性辩论学习。 在T2 IMFIL 上, 度上, 的双级L, 上, 上, 做了一个清晰的双级L, 模拟的升级的升级的升级的升级的试测测测测测测测测测测测测测测测测测测测测测测测, 。