Generative adversarial networks (GANs) are very popular to generate realistic images, but they often suffer from the training instability issues and the phenomenon of mode loss. In order to attain greater diversity in GAN synthesized data, it is critical to solving the problem of mode loss. Our work explores probabilistic approaches to GAN modelling that could allow us to tackle these issues. We present Prb-GANs, a new variation that uses dropout to create a distribution over the network parameters with the posterior learnt using variational inference. We describe theoretically and validate experimentally using simple and complex datasets the benefits of such an approach. We look into further improvements using the concept of uncertainty measures. Through a set of further modifications to the loss functions for each network of the GAN, we are able to get results that show the improvement of GAN performance. Our methods are extremely simple and require very little modification to existing GAN architecture.
翻译:生成对抗性网络(GANs)非常流行,可以产生现实的图像,但往往会受到培训不稳定问题和模式损失现象的影响。为了在GAN合成数据中实现更大的多样性,我们的工作对于解决模式损失问题至关重要。我们的工作探索了GAN建模的概率性方法,使我们能够解决这些问题。我们介绍了Prb-GANs,这是一个新的变异,它利用变异推理学的后遗症在网络参数上进行分布。我们用简单和复杂的数据集来描述这种方法的好处并进行实验验证。我们利用不确定性计量的概念来研究进一步的改进。通过对GAN每个网络的损失功能进行一系列进一步的修改,我们能够取得能够显示GAN性能改善的结果。我们的方法非常简单,对现有的GAN结构几乎没有什么修改。