近年来,生成式对抗网络(generative adversarial nets, GAN)迅速发展,已经成为当前机器学习领域的主要研究方向之一。GAN来源于零和博弈的思想,其生成器和鉴别器对抗学习,获取给定样本的数据分布,生成新的样本数据。对GAN模型在图片生成、异常样本检测和定位、文字生成图片以及图片超分辨率等多方面进行了大量的调查研究,并在这些GAN的应用所取得的实质性进展进行了系统的阐述。对GAN的提出背景与研究意义、理论模型与改进结构,以及其主要应用领域进行了总结。通过对GAN在各方面的应用分析,对GAN的不足以及未来发展方向进行综述。