Multi-objective optimization is key to solving many Engineering Design problems, where design parameters are optimized for several performance indicators. However, optimization results are highly dependent on how the designs are parameterized. Researchers have shown that deep generative models can learn compact design representations, providing a new way of parameterizing designs to achieve faster convergence and improved optimization performance. Despite their success in capturing complex distributions, existing generative models face three challenges when used for design problems: 1) generated designs have limited design space coverage, 2) the generator ignores design performance, and 3)~the new parameterization is unable to represent designs beyond training data. To address these challenges, we propose MO-PaDGAN, which adds a Determinantal Point Processes based loss function to the generative adversarial network to simultaneously model diversity and (multi-variate) performance. MO-PaDGAN can thus improve the performances and coverage of generated designs, and even generate designs with performances exceeding those from training data. When using MO-PaDGAN as a new parameterization in multi-objective optimization, we can discover much better Pareto fronts even though the training data do not cover those Pareto fronts. In a real-world multi-objective airfoil design example, we demonstrate that MO-PaDGAN achieves, on average, an over 180\% improvement in the hypervolume indicator when compared to the vanilla GAN or other state-of-the-art parameterization methods.


翻译:多重目标优化是解决许多工程设计问题的关键,因为许多绩效指标的设计参数是最佳的设计参数。然而,优化的结果在很大程度上取决于设计如何参数化。研究人员已经表明,深基因化模型可以学习精细设计图示,提供新的参数化设计参数化新方法,以实现更快的趋同和改进优化性能。尽管现有基因化模型成功地捕捉了复杂的分布,但在设计问题中使用了三个挑战:(1) 生成的设计在设计空间覆盖面上有限,(2) 发电机忽略了设计性能,和(3) 新的参数化无法代表培训数据以外的设计。为了应对这些挑战,我们建议MO-PADGAN, 它将基于监测点的损耗功能添加到基因式对称对抗网络上,以同时模型多样性和(多变式)性能。MO-PADGAN能够提高生成的设计的性能和覆盖范围,甚至产生超过培训数据中性能的设计的设计。在多目标化优化中,我们发现Paretofront, 即使培训数据不覆盖帕雷托诺点点损耗效处理功能, 也能够比实际的GANO-ANO-ANO-stal eximal ex agnistrual ex acal ex ex exual ex ex ex ex exual exual produdustrual ex sublemental aus aus aus a ex ex ex ex ex ex ex ex ex ex ex exualmentalmentalmentalmentalmentalmentalmentalmentalmentalmentalmentalmentalmentalmentalmentalmentalmentalmental lautmental lauts lauts a lauts a ex a lauts a ex a ex a ex ex ex ex ex ex ex ex a ex a ex ex ex ex ex exmental lautmental ex ex a ex ex ex ex lautal a ex ex ex a ex ex ex ex ex ex ex ex ex ex lautal a la ex ex ex a ex a lamental a

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
Top
微信扫码咨询专知VIP会员