We consider a chance-constrained multi-robot motion planning problem in the presence of Gaussian motion and sensor noise. Our proposed algorithm, CC-K-CBS, leverages the scalability of kinodynamic conflict-based search (K-CBS) in conjunction with the efficiency of the Gaussian belief trees used in the Belief-A framework, and inherits the completeness guarantees of Belief-A's low-level sampling-based planner. We also develop three different methods for robot-robot probabilistic collision checking, which trade off computation with accuracy. Our algorithm generates motion plans driving each robot from its initial state to its goal while accounting for the evolution of its uncertainty with chance-constrained safety guarantees. Benchmarks compare computation time to conservatism of the collision checkers, in addition to characterizing the performance of the planner as a whole. Results show that CC-K-CBS can scale up to 30 robots.
翻译:本文考虑在高斯运动和传感器噪声存在的情况下的机器人多点运动规划问题。我们提出的算法 CC-K-CBS,利用了基础图形冲突搜索 (K-CBS) 的可扩展性和 Belief-A 框架中使用的高斯置信树的效率,并继承了 Belief-A 低级抽样规划器的完整性保证。我们还开发了三种不同的机器人 - 机器人概率碰撞检查方法,这些方法在计算和准确性之间进行平衡。我们的算法生成运动计划,从每个机器人的初始状态到达其目标,同时考虑其不确定性的演变并具有几率约束的安全保证。基准测试比较了碰撞检查程序的保守性与计算时间,并表征了整个规划器的性能。结果显示,CC-K-CBS 可扩展到 30 个机器人。