In recent years, densifying multiple-input multiple-output (MIMO) has attracted much attention from the communication community. Thanks to the subwavelength antenna spacing, the strong correlations among densifying antennas provide sufficient prior knowledge about channel state information (CSI). This inspires the careful design of observation matrices (e.g., transmit precoders and receive combiners), that exploits the CSI prior knowledge, to boost channel estimation performance. Aligned with this vision, this work proposes to jointly design the combiners and precoders by maximizing the mutual information between the received pilots and densifying MIMO channels. A two-dimensional ice-filling (2DIF) algorithm is proposed to efficiently accomplish this objective. The algorithm is motivated by the fact that the eigenspace of MIMO channel covariance can be decoupled into two sub-eigenspaces, which are associated with the correlations of transmitter antennas and receiver antennas, respectively. By properly setting the precoder and the combiner as the eigenvectors from these two sub-eigenspaces, the 2DIF promises to generate near-optimal observation matrices. Moreover, we further extend the 2DIF method to the popular hybrid combining systems, where a two-stage 2DIF (TS-2DIF) algorithm is developed to handle the analog combining circuits realized by phase shifters. Simulation results demonstrate that, compared to the state-of-the-art schemes, the proposed 2DIF and TS-2DIF methods can achieve superior channel estimation accuracy.


翻译:近年来,密集化多输入多输出(MIMO)技术引起了通信界的广泛关注。得益于亚波长天线间距,密集天线间的强相关性为信道状态信息(CSI)提供了充分的先验知识。这启发了对观测矩阵(例如发射预编码器和接收合并器)的精心设计,以利用CSI先验知识来提升信道估计性能。基于这一思路,本文提出通过最大化接收导频与密集MIMO信道之间的互信息来联合设计合并器与预编码器。为实现这一目标,提出了一种二维注冰(2DIF)算法。该算法的动机在于,MIMO信道协方差矩阵的特征空间可解耦为两个子特征空间,分别与发射天线和接收天线的相关性相关联。通过将预编码器和合并器恰当地设置为这两个子特征空间的特征向量,2DIF算法能够生成近似最优的观测矩阵。此外,我们进一步将2DIF方法扩展到流行的混合合并系统,针对由移相器实现的模拟合并电路,开发了一种两阶段2DIF(TS-2DIF)算法。仿真结果表明,与现有先进方案相比,所提出的2DIF与TS-2DIF方法能够实现更优的信道估计精度。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员