Distributed optimization provides a framework for deriving distributed algorithms for a variety of multi-robot problems. This tutorial constitutes the first part of a two-part series on distributed optimization applied to multi-robot problems, which seeks to advance the application of distributed optimization in robotics. In this tutorial, we demonstrate that many canonical multi-robot problems can be cast within the distributed optimization framework, such as multi-robot simultaneous localization and planning (SLAM), multi-robot target tracking, and multi-robot task assignment problems. We identify three broad categories of distributed optimization algorithms: distributed first-order methods, distributed sequential convex programming, and the alternating direction method of multipliers (ADMM). We describe the basic structure of each category and provide representative algorithms within each category. We then work through a simulation case study of multiple drones collaboratively tracking a ground vehicle. We compare solutions to this problem using a number of different distributed optimization algorithms. In addition, we implement a distributed optimization algorithm in hardware on a network of Rasberry Pis communicating with XBee modules to illustrate robustness to the challenges of real-world communication networks.
翻译:分布式优化为各种多机器人问题提供了计算分布式算法的框架。 此教程构成用于多机器人问题的分布式优化两部分系列的第一部分, 旨在推进在机器人中应用分布式优化。 在此教程中, 我们证明许多可分布式多机器人问题可以在分布式优化框架内出现, 如多机器人同步本地化和规划( SLAM)、 多机器人目标跟踪和多机器人任务分配问题。 我们确定了三大类分布式优化算法: 分布式一阶法、 分布式连续的 convex 程序、 乘数交替方向法( ADMMM)。 我们描述了每个类别的基本结构, 提供了每个类别中的代表性算法。 然后我们通过对多个无人机进行模拟案例研究, 合作跟踪地面飞行器。 我们使用一些不同的分布式优化算法来比较这一问题的解决方案。 此外, 我们用硬件在与XUBee模块通信的Rasberry Pis网络上实施分布式优化算法。