Few-shot learning is a fundamental and challenging problem since it requires recognizing novel categories from only a few examples. The objects for recognition have multiple variants and can locate anywhere in images. Directly comparing query images with example images can not handle content misalignment. The representation and metric for comparison are critical but challenging to learn due to the scarcity and wide variation of the samples in few-shot learning. In this paper, we present a novel semantic alignment model to compare relations, which is robust to content misalignment. We propose to add two key ingredients to existing few-shot learning frameworks for better feature and metric learning ability. First, we introduce a semantic alignment loss to align the relation statistics of the features from samples that belong to the same category. And second, local and global mutual information maximization is introduced, allowing for representations that contain locally-consistent and intra-class shared information across structural locations in an image. Thirdly, we introduce a principled approach to weigh multiple loss functions by considering the homoscedastic uncertainty of each stream. We conduct extensive experiments on several few-shot learning datasets. Experimental results show that the proposed method is capable of comparing relations with semantic alignment strategies, and achieves state-of-the-art performance.
翻译:少见的学习是一个根本性的、具有挑战性的问题,因为它需要从几个例子中认清新类别。 需要识别的对象有多种变异, 可以在图像中找到任何地方。 直接比较查询图像和示例图像无法处理内容的不匹配。 比较的表示和衡量标准十分关键, 但由于样本稀少且在少见的学习中差异很大, 学习的方法也非常困难。 在本文中, 我们提出了一个用于比较关系的语义调整新模式, 以比较关系, 这对于内容的不匹配非常有力。 我们提议在现有少见的学习框架中添加两个关键要素, 以便提高特性和计量学习能力。 首先, 我们引入语义调整损失, 以将来自同一类别样本的特征的统计联系起来。 其次, 引入本地和全球的相互信息最大化, 允许在图像中显示包含本地一致和阶级内部共享信息的表达方式。 第三, 我们引入一个原则性的方法, 来权衡多个损失函数, 以考虑到每串流的同性不确定性。 我们对几个点数张的学习数据集进行广泛的实验。 实验结果表明, 实验结果显示, 拟议的方法能够将业绩与州际关系进行比较。