Neutrino cross-section measurements are often presented as unfolded binned distributions in ``true'' variables. The ill-posedness of the unfolding problem can lead to results with strong anti-correlations and fluctuations between bins, which make comparisons to theoretical models in plots difficult. To alleviate this problem, one can introduce regularisation terms in the unfolding procedure. These suppress potential anti-correlations in the result, at the cost of introducing some bias towards the expected shape of the result, like the smoothness of bin-to-bin differences. Using simple linear algebra, it is possible to regularise any result that is presented as a central value and a covariance matrix. This ``post-hoc'' regularisation is generally much faster than repeating the unfolding method with different regularisation terms. The method also yields a regularisation matrix $A$ which connects the regularised to the unregularised result, and can be used to retain the full statistical power of the unregularised result when publishing a nicer looking regularised result. When doing this, the bias of the regularisation can be understood as a data visualisation problem rather than a statistical one. The strength of the regularisation can be chosen by minimising the difference between the implicitly uncorrelated distribution shown in the plots and the actual distribution described by the unregularised central value and covariance. The Wasserstein distance is a suitable measure for that difference. Aside from minimising the difference between the shown and the actual result, additional information can be provided by showing the local log-likelihood gradient of the models shown in the plots. This adds more information about where the model is ``pulled'' by the data than just comparing the bin values to the data's central values.
翻译:中子剖面测量通常显示为“ tret' ” 变量中的“ bin- bin ” 淡化分布。 正在出现的问题的错误状态可能导致结果, 其结果是强烈的反腐蚀值和堆积矩阵。 使得对地块的理论模型难以进行比较。 为了缓解这一问题, 可以在正在展开的程序中引入常规化条件。 这些抑制结果中的潜在反腐蚀值, 其代价是引入对结果预期形状的偏差, 比如“ bin- bin bin ” 变量的平滑性。 使用简单的线性代数, 可能会将任何结果正规化, 以核心值和变异性矩阵的形式呈现出来。 这个“ 后加热” 常规化比以不同常规化的方式重复正在发展的方法要快得多。 这个方法还可以产生一个正统化矩阵, 将常规变异性模型显示的正本值与正本值之间的偏差, 可以通过一个不精确的直观性计算结果来显示。 通过一个不精确的直观性模型来显示正态分布结果, 。 通过一个不精确的直观的计算结果可以显示正正态变的正态变化结果, 。