Computing systems have been evolving to be more pervasive, heterogeneous, and dynamic. An increasing number of emerging domains now rely on diverse edge to cloud continuum where the execution of applications often spans various tiers of systems with significantly heterogeneous computational capabilities. Resources in each tier are often handled in isolation due to scalability and privacy concerns. However, better overall resource utilization could be achieved if different tiers of systems had the means to communicate their computational capabilities. In this paper, we propose H-EYE, a universal approach to holistically capture diverse computational characteristics of edge-cloud systems with arbitrary topologies and to manage the assignment of tasks to the computational resources with the whole continuum in the scope. Our proposed work introduces two significant innovations: (1) We present a multi-layer, graph-based hardware (HW) representation and a modular performance modeling interface that could capture interactions and inference between different computing and communication resources in the system at desired level of detail. (2) We introduce a novel orchestrator mechanism that leverages the graph-based HW representation to hierarchically locate target devices that a given set of tasks could be mapped to. Orchestrator provides isolation for various device groups and allows hierarchical abstraction to scalably find mappings that satisfy system deadlines. The orchestrator internally relies on a novel traverser that takes shared resource slowdown into account. We demonstrate the utility and flexibility of H-EYE on edge-server systems that are deployed on the field in two different disciplines, improving up to 47% latency over baselines with less than 2% scheduling overhead


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员