We derive new bounds for the condition number of kernel matrices, which we then use to enhance existing non-asymptotic test error bounds for kernel ridgeless regression (KRR) in the over-parameterized regime for a fixed input dimension. For kernels with polynomial spectral decay, we recover the bound from previous work; for exponential decay, our bound is non-trivial and novel. Our contribution is two-fold: (i) we rigorously prove the phenomena of tempered overfitting and catastrophic overfitting under the sub-Gaussian design assumption, closing an existing gap in the literature; (ii) we identify that the independence of the features plays an important role in guaranteeing tempered overfitting, raising concerns about approximating KRR generalization using the Gaussian design assumption in previous literature.
翻译:暂无翻译