We propose a novel framework to conduct field extraction from forms with unlabeled data. To bootstrap the training process, we develop a rule-based method for mining noisy pseudo-labels from unlabeled forms. Using the supervisory signal from the pseudo-labels, we extract a discriminative token representation from a transformer-based model by modeling the interaction between text in the form. To prevent the model from overfitting to label noise, we introduce a refinement module based on a progressive pseudo-label ensemble. Experimental results demonstrate the effectiveness of our framework.


翻译:我们提出一个新的框架,用未贴标签的数据从表格中进行实地抽取。为了给培训过程设套套,我们制定了一种基于规则的方法,从未贴标签的表格中挖掘噪音的假标签。我们利用假标签的监督信号,通过模拟表格中文本之间的相互作用,从基于变压器的模型中提取一种歧视性的象征性表述。为了防止模型过度适应标签噪音,我们引入了一个基于进步的伪标签合奏的完善模块。实验结果证明了我们框架的有效性。

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【2020新书】Kafka实战:Kafka in Action,209页pdf
专知会员服务
67+阅读 · 2020年3月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Learning with Noise: Supervised Relation Extraction
开放知识图谱
3+阅读 · 2018年1月4日
Arxiv
0+阅读 · 2021年11月30日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【2020新书】Kafka实战:Kafka in Action,209页pdf
专知会员服务
67+阅读 · 2020年3月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Learning with Noise: Supervised Relation Extraction
开放知识图谱
3+阅读 · 2018年1月4日
Top
微信扫码咨询专知VIP会员