User equipment (UE) positioning accuracy is of paramount importance in current and future communications standard. However, traditional methods tend to perform poorly in non line of sight (NLoS) scenarios. As a result, deep learning is a candidate to enhance the UE positioning accuracy in NLoS environments. In this paper, we study the efficiency of deep learning on the 3GPP indoor factory (InF) statistical channel. More specifically, we analyse the impacts of several key elements on the positioning accuracy: the type of radio data used, the number of base stations (BS), the size of the training dataset, and the generalization ability of a trained model.
翻译:用户设备(UE)的定位准确性对当前和未来的通信标准至关重要。然而,传统的方法在非直线视野(NLoS)情况下往往表现不佳。因此,深度学习是提高NLoS环境中UE定位准确性的一种选择。在本文中,我们研究了深度学习在3GPP室内工厂(InF)统计信道上的效率。更具体地,我们分析了多个关键因素对定位精度的影响:所使用的无线电数据类型,基站数量,训练数据集的大小以及训练模型的泛化能力。