This paper investigates practical coding schemes for Distributed Hypothesis Testing (DHT). While the literature has extensively analyzed the information-theoretic performance of DHT and established bounds on Type-II error exponents through quantize and quantize-binning achievability schemes, the practical implementation of DHT coding schemes has not yet been investigated. Therefore, this paper introduces practical implementations of quantizers and quantize-binning schemes for DHT, leveraging short-length binary linear block codes. Furthermore, it provides exact analytical expressions for Type-I and Type-II error probabilities associated with each proposed coding scheme. Numerical results show the accuracy of the proposed analytical error probability expressions, and enable to compare the performance of the proposed schemes.
翻译:暂无翻译