We introduce simple quadrature rules for the family of nonparametric nonconforming quadrilateral element with four degrees of freedom. Our quadrature rules are motivated by the work of Meng {\it et al.} \cite{meng2018new}. First, we introduce a family of MVP (Mean Value Property)-preserving four DOFs nonconforming elements on the intermediate reference domain introduced by Meng {\it et al.}. Then we design two--points and three--points quadrature rules on the intermediate reference domain. Under the assumption on equal quadrature weights, the deviation from the quadrilateral center of the Gauss points for the two points and three points rules assumes the same quadratic polynomials with constant terms modified. Thus, the two--points rule and three--points rule are constructed at one stroke. The quadrature rules are asymptotically optimal as the mesh size is sufficiently small. Several numerical experiments are carried out, which show efficiency and convergence properties of the new quadrature rules.
翻译:我们为非对称非对立四边形元素的家庭引入了简单的二次曲线规则,有四度自由。 我们的二次曲线规则是由孟氏等人的工作驱动的。 首先, 我们引入了MVP(ME 价值财产)家族, 保留了孟氏等人在中间参照域引入的四条不兼容元素。 然后, 我们设计了中间参照域的两点和三点四方规则。 在等度重量的假设下, 两点和三点规则偏离高斯的四边形中心, 假设了两点和三点规则的四边形多元性, 并不断修改条件。 因此, 两点规则和三点规则的构造在一中点上。 两点规则和三点规则的构造与网形大小相当相同, 二次曲线规则与网格大小相当最佳。 一些数字实验正在进行, 显示了新二次曲线规则的效率和趋近性。