This paper reports on developing an integrated framework for safety-aware informative motion planning suitable for legged robots. The information-gathering planner takes a dense stochastic map of the environment into account, while safety constraints are enforced via Control Barrier Functions (CBFs). The planner is based on the Incrementally-exploring Information Gathering (IIG) algorithm and allows closed-loop kinodynamic node expansion using a Model Predictive Control (MPC) formalism. Robotic exploration and information gathering problems are inherently path-dependent problems. That is, the information collected along a path depends on the state and observation history. As such, motion planning solely based on a modular cost does not lead to suitable plans for exploration. We propose SAFE-IIG, an integrated informative motion planning algorithm that takes into account: 1) a robot's perceptual field of view via a submodular information function computed over a stochastic map of the environment, 2) a robot's dynamics and safety constraints via discrete-time CBFs and MPC for closed-loop multi-horizon node expansions, and 3) an automatic stopping criterion via setting an information-theoretic planning horizon. The simulation results show that SAFE-IIG can plan a safe and dynamically feasible path while exploring a dense map.
翻译:本文报告了为适合脚下机器人的安全意识信息化运动规划制定综合框架的情况。信息收集计划员考虑到环境的密集随机图,同时通过控制屏障功能(CBFs)实施安全限制。计划员基于递增探索信息收集(IIG)算法,允许使用模型预测控制(MPC)形式法扩大闭路电动节点。机器人探索和信息收集问题本身就取决于路径问题。也就是说,沿路径收集的信息取决于状态和观察历史。因此,仅以模块成本为基础的行动规划并不导致适当的勘探计划。我们提议采用SAFE-IIG, 综合信息化运动规划算法,其中考虑到:(1) 机器人的感知领域,通过一个小模式信息函数,根据环境的模型分析图计算;(2) 机器人的动态和安全性制约,通过离线时间 CBFFS和MPC收集的动态和安全性制约取决于状态和观察历史。因此,仅以模块成本为基础的行动规划不会导致合适的勘探计划。我们提议采用SARE-II 自动停止动态地平线,同时设定一个安全、动态地平地平线。