Unmanned Aerial vehicles (UAVs) are widely used as network processors in mobile networks, but more recently, UAVs have been used in Mobile Edge Computing as mobile servers. However, there are significant challenges to use UAVs in complex environments with obstacles and cooperation between UAVs. We introduce a new multi-UAV Mobile Edge Computing platform, which aims to provide better Quality-of-Service and path planning based on reinforcement learning to address these issues. The contributions of our work include: 1) optimizing the quality of service for mobile edge computing and path planning in the same reinforcement learning framework; 2) using a sigmoid-like function to depict the terminal users' demand to ensure a higher quality of service; 3) applying synthetic considerations of the terminal users' demand, risk and geometric distance in reinforcement learning reward matrix to ensure the quality of service, risk avoidance, and the cost-savings. Simulations have shown the effectiveness and feasibility of our platform, which can help advance related researches.
翻译:无人驾驶航空飞行器(无人驾驶飞行器)被广泛用作移动网络的网络处理器,但最近,无人驾驶飞行器被移动边缘电子计算用作移动服务器,然而,在有障碍的复杂环境中使用无人驾驶飞行器面临重大挑战,无人驾驶飞行器之间存在障碍,无人驾驶飞行器之间也存在合作。我们推出一个新的多无人驾驶航空飞行器(无人驾驶飞行器)移动边缘电子计算平台,其目的是在强化学习的基础上提供更好的服务质量和路径规划,以解决这些问题。我们的工作贡献包括:(1) 在同一强化学习框架内优化移动边缘计算和路径规划服务的质量;(2) 使用类似小类功能来描述终端用户的需求,以确保提高服务质量;(3) 在加强学习奖励矩阵时,对终端用户的需求、风险和几何数距离进行综合考虑,以确保服务质量、避免风险和节省成本。模拟展示了我们的平台的有效性和可行性,有助于推进相关研究。