Modeling powerful interactions is a critical challenge in Click-through rate (CTR) prediction, which is one of the most typical machine learning tasks in personalized advertising and recommender systems. Although developing hand-crafted interactions is effective for a small number of datasets, it generally requires laborious and tedious architecture engineering for extensive scenarios. In recent years, several neural architecture search (NAS) methods have been proposed for designing interactions automatically. However, existing methods only explore limited types and connections of operators for interaction generation, leading to low generalization ability. To address these problems, we propose a more general automated method for building powerful interactions named AutoPI. The main contributions of this paper are as follows: AutoPI adopts a more general search space in which the computational graph is generalized from existing network connections, and the interactive operators in the edges of the graph are extracted from representative hand-crafted works. It allows searching for various powerful feature interactions to produce higher AUC and lower Logloss in a wide variety of applications. Besides, AutoPI utilizes a gradient-based search strategy for exploration with a significantly low computational cost. Experimentally, we evaluate AutoPI on a diverse suite of benchmark datasets, demonstrating the generalizability and efficiency of AutoPI over hand-crafted architectures and state-of-the-art NAS algorithms.


翻译:模拟强大的互动是“点通率”(CTR)预测中的一项关键挑战,这是个人化广告和建议系统最典型的机器学习任务之一。虽然发展手工化互动对少数数据集有效,但通常需要为广泛的情景进行艰苦和乏味的建筑工程。近年来,为自动设计互动,提出了几种神经结构搜索方法。然而,现有方法仅探索互动生成操作者有限的类型和联系,导致普遍化能力低。为了解决这些问题,我们提出了一种更普遍的建立强大互动的自动化方法,称为“自动化”。本文的主要贡献如下:自动制造协会采用一个更一般的搜索空间,从现有网络连接中普及计算图,而图边缘的互动操作者则从具有代表性的手工艺作品中提取。它使得可以搜索各种强大的地貌互动,从而产生更高的AUC和低的广度记录损失。此外,AutoPI利用基于梯度的搜索战略,以大幅低计算成本进行勘探。我们实验性地评估了AutoPI的通用标准结构。

3
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
50+阅读 · 2021年6月30日
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
42+阅读 · 2020年12月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2021年4月21日
Arxiv
8+阅读 · 2020年5月2日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年6月30日
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
42+阅读 · 2020年12月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员