Drug discovery often relies on the successful prediction of protein-ligand binding affinity. Recent advances have shown great promise in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes. However, existing solutions usually treat protein-ligand complexes as topological graph data, thus the biomolecular structural information is not fully utilized. The essential long-range interactions among atoms are also neglected in GNN models. To this end, we propose a structure-aware interactive graph neural network (SIGN) which consists of two components: polar-inspired graph attention layers (PGAL) and pairwise interactive pooling (PiPool). Specifically, PGAL iteratively performs the node-edge aggregation process to update embeddings of nodes and edges while preserving the distance and angle information among atoms. Then, PiPool is adopted to gather interactive edges with a subsequent reconstruction loss to reflect the global interactions. Exhaustive experimental study on two benchmarks verifies the superiority of SIGN.
翻译:药物发现往往依赖于对蛋白质和紧凑性的成功预测。最近的进展在应用图形神经网络(GNNS)以通过学习蛋白质和复合性的表现来更好地预测亲近性方面显示了巨大的希望。然而,现有的解决方案通常将蛋白-链和复杂性作为表层图形数据处理,因此没有充分利用生物分子结构信息。在GNN模型中,原子之间重要的长距离相互作用也被忽视。为此,我们提议建立一个结构-认识互动图形神经网络(SIGN),由两部分组成:极地点透视层(PGAL)和对对边互动集合(PiPool ) 。具体地说,PGAL反复进行节点和边缘嵌入节点和边缘的节点组合过程,同时保持原子之间的距离和角信息。随后,PiPool被采用来收集互动边缘和随后重建损失以反映全球互动性。关于两个基准的深入实验研究证实了Sign的优越性。