The packet routing problem asks to select routing paths that minimize the maximum edge congestion for a set of packets specified by source-destination vertex pairs. We revisit a semi-oblivious approach to this problem: each source-destination pair is assigned a small set of predefined paths before the demand is revealed, while the sending rates along the paths can be optimally adapted to the demand. This approach has been considered in practice in network traffic engineering due to its superior robustness and performance as compared to both oblivious routing and traditional traffic engineering approaches. We show the existence of sparse semi-oblivious routings: only $O(\log n)$ paths are selected between each pair of vertices. The routing is $(poly \log n)$-competitive for all demands against the offline-optimal congestion objective. Even for the well-studied case of hypercubes, no such result was known: our deterministic and oblivious selection of $O(\log n)$ paths is the first simple construction of a deterministic oblivious structure that near-optimally assigns source-destination pairs to few routes. Our results contrast the current solely-negative landscape of results for semi-oblivious routing. We give the sparsity-competitiveness trade-off for lower sparsities and nearly match it with a lower bound. Our construction is extremely simple: Sample the few paths from any competitive oblivious routing. Indeed, this natural construction was used in traffic engineering as an unproven heuristic. We give a satisfactory theoretical justification for their empirical effectiveness: the competitiveness of the construction improves exponentially with the number of paths. Finally, when combined with the recent hop-constrained oblivious routing, we also obtain sparse and competitive structures for the completion-time objective.


翻译:包装路由问题要求选择一条路径, 以最大限度地减少源端顶端顶端对顶端配对指定的一组包件的最大边缘拥堵。 我们重新审视了一种半明显的方法: 每一对源端顶端配有一套小的预定义路径, 而在路径沿线的发送率可以最佳地适应需求。 在网络交通工程中, 这种方法之所以被考虑, 是因为其超强的稳健性和性能, 与模糊的路线和传统交通工程方法相比。 我们展示了零散的半明显路径: 在每对顶端之间只选择了 $O (log n) 的半明显路径。 每对顶端顶端顶端配有一套小的预设路径。 路径配有美元(poly n), 沿离端端端端端路的所有需求都具有竞争性。 即便对高压管的情况, 也没有看到这样的结果: 我们的确定性、 平坦端选择 和 美元( log n) 路径是第一个简单、 直径路路路路程的不透明性, 也是我们当前最不固定的底端结构, 的固定的构建结果, 也是我们目前最接近最接近的固定的固定的固定的。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员