Control of nonlinear uncertain systems is a common challenge in the robotics field. Nonlinear latent force models, which incorporate latent uncertainty characterized as Gaussian processes, carry the promise of representing such systems effectively, and we focus on the control design for them in this work. To enable the design, we adopt the state-space representation of a Gaussian process to recast the nonlinear latent force model and thus build the ability to predict the future state and uncertainty concurrently. Using this feature, a stochastic model predictive control problem is formulated. To derive a computational algorithm for the problem, we use the scenario-based approach to formulate a deterministic approximation of the stochastic optimization. We evaluate the resultant scenario-based model predictive control approach through a simulation study based on motion planning of an autonomous vehicle, which shows much effectiveness. The proposed approach can find prospective use in various other robotics applications.
翻译:控制非线性不确定系统是机器人领域共同面临的一项挑战。非线性潜伏力模型包含以高山过程为特征的潜在不确定性,具有有效代表这些系统的前景,我们在此工作中侧重于这些系统的控制设计。为了能够进行设计,我们采用了高山过程的国家空间代表,以重新定位非线性潜伏力模型,从而建立同时预测未来状态和不确定性的能力。利用这一特征,形成了一个随机模型预测控制问题。为得出这一问题的计算算法,我们采用了基于情景的方法来制定基于情景的随机优化的确定性近似值。我们通过基于自主飞行器运动规划的模拟研究,对由此产生的基于情景的模型预测控制方法进行评估,该模拟研究显示了很大的有效性。拟议方法可以在其他各种机器人应用中找到潜在用途。