Time series classification is an important problem in real world. Due to its non-stationary property that the distribution changes over time, it remains challenging to build models for generalization to unseen distributions. In this paper, we propose to view the time series classification problem from the distribution perspective. We argue that the temporal complexity attributes to the unknown latent distributions within. To this end, we propose DIVERSIFY to learn generalized representations for time series classification. DIVERSIFY takes an iterative process: it first obtains the worst-case distribution scenario via adversarial training, then matches the distributions of the obtained sub-domains. We also present some theoretical insights. We conduct experiments on gesture recognition, speech commands recognition, wearable stress and affect detection, and sensor-based human activity recognition with a total of seven datasets in different settings. Results demonstrate that DIVERSIFY significantly outperforms other baselines and effectively characterizes the latent distributions by qualitative and quantitative analysis.
翻译:时间序列分类在现实世界中是一个重要问题。 由于其非固定性特性,分配随着时间的变化而变化,因此建立推广到无形分布的模型仍然具有挑战性。 在本文中,我们提议从分布角度看待时间序列分类问题。 我们主张,时间序列的复杂性是内部未知潜在分布的特征。 为此,我们建议DIVERSIFY学习时间序列分类的普遍表现。 DIVERSIFY 采用一个迭接过程:它首先通过对抗性培训获得最坏的分布假设,然后与所获得的子域的分布相匹配。 我们还提出了一些理论见解。 我们进行了手势识别、语音指令识别、可磨损压力和影响检测以及传感器人类活动识别实验,在不同环境中总共七个数据集。 结果表明,DIVERSIFY大大超越了其他基线,并有效地通过定性和定量分析对潜在分布进行了定性和定量分析。