项目名称: 电压调控液晶中Au纳米棒增强稀土离子发光机制的研究

项目编号: No.11504261

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 刘艳玲

作者单位: 天津城建大学

项目金额: 21万元

中文摘要: 稀土掺杂发光材料的研究是当前的热点,但是稀土材料荧光效率的进一步提高和抑制荧光猝灭一直是个难题,我们拟利用Au纳米棒的局域表面等离子体共振(LSPR)增强稀土离子的发光强度,同时利用电压调节向列相液晶的折射率,来调节LSPR和晶体场环境,进而调控稀土离子的发光波长和强度,最终设计出具有可调性和高效发光的稀土发光材料。利用Au纳米棒的吸收谱具有两个吸收波长以及波长可覆盖可见区域和近红外区域的优势,通过电压调节,利用激发增强和辐射增强,实现泵浦光向发光离子有效的能量传递,最大程度地提高稀土离子的上转换和下转换的发光效率;利用有机体的自组装过程,合成Au-Re络合物,有效地控制发光中心与Au纳米棒之间的距离,从而减少无辐射跃迁。本课题将进一步提高稀土离子的荧光效率,获得一种电光控制调节稀土发光效率的科学方法。

中文关键词: 金纳米棒;局域表面等离子体共振;增强发光;稀土离子;向列相液晶

英文摘要: Rare earth doped luminescent materials have drawn significant research interest. But, a challenge is always present, which increase fluorescence efficiency further and inhibit fluorescence quenching. We proposed the tunable local surface plasmon resonance (LSPR) from Au nanorods and crystal field. The emission-wavelength and intensity of rare ions can be tailored through altering the effective dielectric constant of nematic liquid crystals (NLCs) via variation of the externally applied electric field. The absorption spectra of Au nanorods have two LSPR wavelengths as an advantage which can cover visible region and near infrared region. The energy transfered from pump light to rare ions can be realized through the enhancement of excitation and emission via variation of applied electric field. The Au-Re compounds will be synthesized via self-assembly process of different organic molecules. By using the different compounds, the effective distance between Au nanorods and rare ions luminescent center can be artificially controlled for avoiding the possible fluorescence quenching. We will improve the fluorescence efficiency for rare ions greatly and obtain a scienticfic research method to control the luminescence of rare ions.

英文关键词: Au nanorod ;Local surface plasmon resonance;Enhance luminescence;Rare earth ions;Nematic liquid crystal

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
15+阅读 · 2021年11月18日
专知会员服务
86+阅读 · 2021年8月8日
【上海交大】<操作系统> 2021课程,附课件
专知会员服务
41+阅读 · 2021年4月3日
专知会员服务
49+阅读 · 2020年8月27日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关VIP内容
《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
15+阅读 · 2021年11月18日
专知会员服务
86+阅读 · 2021年8月8日
【上海交大】<操作系统> 2021课程,附课件
专知会员服务
41+阅读 · 2021年4月3日
专知会员服务
49+阅读 · 2020年8月27日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员