In many reacting flow systems, the thermo-chemical state-space is known or assumed to evolve close to a low-dimensional manifold (LDM). Various approaches are available to obtain those manifolds and subsequently express the original high-dimensional space with fewer parameterizing variables. Principal component analysis (PCA) is one of the dimensionality reduction methods that can be used to obtain LDMs. PCA does not make prior assumptions about the parameterizing variables and retrieves them empirically from the training data. In this paper, we show that PCA applied in local clusters of data (local PCA) is capable of detecting the intrinsic parameterization of the thermo-chemical state-space. We first demonstrate that utilizing three common combustion models of varying complexity: the Burke-Schumann model, the chemical equilibrium model and the homogeneous reactor. Parameterization of these models is known a priori which allows for benchmarking with the local PCA approach. We further extend the application of local PCA to a more challenging case of a turbulent non-premixed $n$-heptane/air jet flame for which the parameterization is no longer obvious. Our results suggest that meaningful parameterization can be obtained also for more complex datasets. We show that local PCA finds variables that can be linked to local stoichiometry, reaction progress and soot formation processes.
翻译:在许多反应流动系统中,热化学状态-空间已知或假定接近低维多元(LDM),已知或假定热化学状态-空间是接近低维多元(LDM)的。有各种办法可以获取这些元件,然后用较少参数变量表达原始的高维空间。主元件分析(PCA)是可用于获取LDM的维度减少方法之一。常设仲裁法院没有事先对参数化变量进行假设,也没有从培训数据中以经验方式取回这些变量。在本文中,我们表明在当地数据组(当地CPA)中应用的五氯苯能够检测热化学状态-空间的内在参数化。我们首先表明,使用三个复杂程度不同的共同燃烧模型:Burke-Schumann模型、化学平衡模型和同质反应堆。这些模型的参数化是事先知道的,因此可以与地方常设仲裁法院的方法进行基准化。我们进一步将当地五氯苯的应用扩大到一个更具有挑战性的案例,即非预先设定的美元-日内/空喷气喷射火焰,而参数化的参数化则不再明显。我们的结果表明,地方的参数化变现为比较复杂的数据系统。