Invariants and conservation laws convey critical information about the underlying dynamics of a system, yet it is generally infeasible to find them without any prior knowledge. We propose ConservNet to achieve this goal, a neural network that extracts a conserved quantity from grouped data where the members of each group share invariants. As a neural network trained with a novel and intuitive loss function called noise-variance loss, ConservNet learns the hidden invariants in each group of multi-dimensional observables in a data-driven, end-to-end manner. We demonstrate the capability of our model with simulated systems having invariants as well as a real-world double pendulum trajectory. ConservNet successfully discovers underlying invariants from the systems from a small number of data points, namely less than several thousand. Since the model is robust to noise and data conditions compared to baseline, our approach is directly applicable to experimental data for discovering hidden conservation laws and relationships between variables.
翻译:变量和养护法传递关于系统基本动态的关键信息,但通常无法在不事先知情的情况下找到这些信息。 我们提议 ConservNet 来实现这一目标。 我们提议 Conserv Net, 这是一种神经网络, 从每个群体成员共享变量的分组数据中提取保留的数量。 作为一个受过新颖和直觉损失功能培训的神经网络, 称为噪音变化损失, Conserv Net 以数据驱动、 端到端的方式, 学习每组多维可观测中隐藏的变量。 我们用模拟系统展示了我们模型的能力, 模拟系统既有变量, 也有真实世界的双曲轨迹。 Conserv Net 成功地从少量数据点( 不到几千个) 发现了系统中的内在变量。 由于该模型对噪音和数据条件与基线相比是强大的, 我们的方法直接适用于实验数据, 以发现隐藏的保存法和变量之间的关系。