The skew monoidal categories of Szlach\'anyi are a weakening of monoidal categories where the three structural laws of left and right unitality and associativity are not required to be isomorphisms but merely transformations in a particular direction. In previous work, we showed that the free skew monoidal category on a set of generating objects can be concretely presented as a sequent calculus. This calculus enjoys cut elimination and admits focusing, i.e. a subsystem of canonical derivations, which solves the coherence problem for skew monoidal categories. In this paper, we develop sequent calculi for partially normal skew monoidal categories, which are skew monoidal categories with one or more structural laws invertible. Each normality condition leads to additional inference rules and equations on them. We prove cut elimination and we show that the calculi admit focusing. The result is a family of sequent calculi between those of skew monoidal categories and (fully normal) monoidal categories. On the level of derivability, these define 8 weakenings of the (unit,tensor) fragment of intuitionistic non-commutative linear logic.
翻译:Szlach\'anani 的 skew 单向类是单向类的弱化, 左翼和右翼单位和组合的三种结构定律不需要是非形态化的, 而只是向某个特定方向的转变。 在先前的著作中, 我们显示, 一组生成物体上的自由的 sukew 单向类可以具体地以序列计算形式呈现。 这个微积分可以被切除, 并承认焦点集中, 即一个罐头衍生子子系统, 解决了 skew 单向类别的一致性问题 。 在本文中, 我们为部分正常的 折向单向类类开发序列计算, 其部分正折向性为单向类, 一种或多种结构定律是不可倒置的。 每种正常状态都会导致额外的推论规则和对立。 我们证明消除了切分数, 并且我们表明, 微量的焦点集中。 其结果在 skew 单向类别和( 完全正常的) 单向类别类别之间是序列。 在可测度的分级逻辑水平上, 这些分解了8 。