In this paper, we develop a family of third order asymptotic-preserving (AP) and asymptotically accurate (AA) diagonally implicit Runge-Kutta (DIRK) time discretization methods for the stiff hyperbolic relaxation systems and kinetic Bhatnagar-Gross-Krook (BGK) model in the semi-Lagrangian (SL) setting. The methods are constructed based on an accuracy analysis of the SL scheme for stiff hyperbolic relaxation systems and kinetic BGK model in the limiting fluid regime when the Knudsen number approaches $0$. An extra order condition for the asymptotic third order accuracy in the limiting regime is derived. Linear Von Neumann stability analysis of the proposed third order DIRK methods are performed to a simplified two-velocity linear kinetic model. Extensive numerical tests are presented to demonstrate the AA, AP and stability properties of our proposed schemes.


翻译:在本文中,我们为硬双曲放松系统和半Lagrangian(SL)设置的动性Bhatnagar-Gross-Krook(BGK)模型开发了三等无症状保存(AP)和无症状保存(AA)直隐的龙格-Kutta(DIRK)时间分解方法,对硬双曲放松系统SL方案的精确分析以及Knudsen数字接近0美元时限制流体系统的动性BGK模型。对限制制度中的无症状第三顺序精确性附加了条件。对提议的DIRK第三顺序的线性Von Neumann稳定性分析进行了简化的双速线动能模型。进行了广泛的数字测试,以证明我们拟议办法的AA、AP和稳定性。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
35+阅读 · 2020年11月29日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
0+阅读 · 2021年6月30日
VIP会员
相关VIP内容
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
35+阅读 · 2020年11月29日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员