Abstract. We introduce a new class of preconditioners to enable flexible GMRES to find a least-squares solution, and potentially the pseudoinverse solution, of large-scale sparse, asymmetric, singular, and potentially inconsistent systems. We develop the preconditioners based on a new observation that generalized inverses (i.e., $\boldsymbol{A}^{g}\in\{\boldsymbol{G}\mid\boldsymbol{A}\boldsymbol{G}\boldsymbol{A}=\boldsymbol{A}\}$) enable the preconditioned Krylov subspaces (KSP) to converge in a single step. We then compute an approximate generalized inverse (AGI) efficiently using a hybrid incomplete factorization (HIF), which combines multilevel incomplete LU with rank-revealing QR on its final Schur complement. We define the criteria of $\epsilon$-accuracy and stability of AGI to guarantee the convergence of preconditioned GMRES for consistent systems. For inconsistent systems, we fortify HIF with iterative refinement to obtain HIFIR, which effectively mitigates the potential breakdowns of KSP and allows accurate computations of the null-space vectors. By combining the two techniques, we then obtain a new solver, called PIPIT, for obtaining the pseudoinverse solutions for systems with low-dimensional null spaces. We demonstrate the robustness of HIF and HIFIR and show that they improve both accuracy and efficiency of the prior state of the art by orders of magnitude for systems with up to a million unknowns.


翻译:抽象。 我们引入了一个新的前提类别, 以便灵活地 GMRES 找到最不平方的解决方案, 并有可能是大规模分散的、不对称的、单一的和潜在的不一致的系统等假冒的解决方案。 我们然后根据一种普遍化的新观察( 即 $\ boldsymbol{ A ⁇ g ⁇ ⁇ ⁇ ⁇ boldsymbol{ G ⁇ boldsymbol{ G ⁇ boldsymbol{ A ⁇ boldsymbol{A ⁇ boldsymbol{A ⁇ $$) 来开发一个先决条件性解决方案, 使具有先决条件的 Krylov 子空间( KSP) 能够以单一的步骤聚集在一起。 然后我们用一种混合的不完整系数( HIF) 来编译一种近似通用的反向反向( AGIG), 将多层次的LU 和 级反向 QR 补充的 QR 。 我们定义了 $slislon- colent commission 系统的统一标准, 和我们通过对 KIFIF 的精确的解算算方法来将硬化的精确的系统进行升级化, 和升级, 使KIFIFIF 以获得的硬化的硬化的硬化的硬化的硬化的硬化的系统 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月4日
Arxiv
0+阅读 · 2021年9月1日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员