Automatic depression detection on Twitter can help individuals privately and conveniently understand their mental health status in the early stages before seeing mental health professionals. Most existing black-box-like deep learning methods for depression detection largely focused on improving classification performance. However, explaining model decisions is imperative in health research because decision-making can often be high-stakes and life-and-death. Reliable automatic diagnosis of mental health problems including depression should be supported by credible explanations justifying models' predictions. In this work, we propose a novel explainable model for depression detection on Twitter. It comprises a novel encoder combining hierarchical attention mechanisms and feed-forward neural networks. To support psycholinguistic studies, our model leverages metaphorical concept mappings as input. Thus, it not only detects depressed individuals, but also identifies features of such users' tweets and associated metaphor concept mappings.
翻译:在Twitter上自动检测抑郁症可以帮助个人私下和方便地在见到心理健康专业人员之前的早期阶段了解他们的心理健康状况。大多数现有的类似黑箱的深度抑郁症检测学习方法主要侧重于提高分类性能。然而,解释模型决定在健康研究中必不可少,因为决策往往具有高度意义和生命与死亡作用。可靠地自动诊断包括抑郁症在内的心理健康问题,应辅以可信的解释,证明模型预测的合理性。在这项工作中,我们提出了一个新的、可以解释的在Twitter上检测抑郁症的模式。它包含一个新颖的编码,将等级关注机制和进取神经网络结合起来。为了支持精神语言学研究,我们的模型利用隐喻概念绘图作为投入。因此,它不仅检测抑郁症患者,而且还识别这些用户的推文和相关隐喻概念绘图的特点。