We present a novel deep neural architecture for learning Electroencephalogram (EEG). To learn the spatial information, our model first obtains the Riemannian mean and distance from Spatial Covariance Matrices (SCMs) on the Riemannian manifold. We then project the spatial information onto the Euclidean space via tangent space learning. Following, two fully connected layers are used to learn the spatial information embeddings. Moreover, our proposed method learns the temporal information via differential entropy and logarithm power spectrum density features extracted from EEG signals in Euclidean space using a deep long short-term memory network with a soft attention mechanism. To combine the spatial and temporal information, we use an effective fusion strategy, which learns attention weights applied to embedding-specific features for decision making. We evaluate our proposed framework on four public datasets across three popular EEG-related tasks, notably emotion recognition, vigilance estimation, and motor imagery classification, containing various types of tasks such as binary classification, multi-class classification, and regression. Our proposed architecture approaches the state-of-the-art on one dataset (SEED) and outperforms other methods on the other three datasets (SEED-VIG, BCI-IV 2A, and BCI-IV 2B), setting new state-of-the-art values and showing the robustness of our framework in EEG representation learning. The source code of our paper is publicly available at https://github.com/guangyizhangbci/EEG_Riemannian.
翻译:为了学习空间信息,我们的模型首先在里曼多管线上获得了里曼纳平均值和距离空间常识矩阵的距离。然后我们将空间信息投射到厄克林德纳空间。随后,我们用两个完全连接的层来学习空间信息嵌入。此外,我们建议的方法通过不同电文和对数能量频谱密度特征学习时间信息,从欧克利德空间的 EEG 信号中提取,使用一个深长的短期内存网络和软关注机制。为了将空间和时间信息结合起来,我们采用了有效的聚合战略,学习了用于嵌入决策特定特征的注意权重。我们评估了我们关于四个广受欢迎的电子环境组相关任务,特别是情感识别、警惕估计和汽车图像分类的拟议框架,其中包括各种新任务,如双轨分类、多级分类和回归。我们拟议的结构在一次公开数据设置的州-亚基域/亚基域数据库中展示了我们州-州-亚基域/亚基数据格式框架。