We present a novel deep neural architecture for learning Electroencephalogram (EEG). To learn the spatial information, our model first obtains the Riemannian mean and distance from Spatial Covariance Matrices (SCMs) on the Riemannian manifold. We then project the spatial information onto the Euclidean space via tangent space learning. Following, two fully connected layers are used to learn the spatial information embeddings. Moreover, our proposed method learns the temporal information via differential entropy and logarithm power spectrum density features extracted from EEG signals in Euclidean space using a deep long short-term memory network with a soft attention mechanism. To combine the spatial and temporal information, we use an effective fusion strategy, which learns attention weights applied to embedding-specific features for decision making. We evaluate our proposed framework on four public datasets across three popular EEG-related tasks, notably emotion recognition, vigilance estimation, and motor imagery classification, containing various types of tasks such as binary classification, multi-class classification, and regression. Our proposed architecture approaches the state-of-the-art on one dataset (SEED) and outperforms other methods on the other three datasets (SEED-VIG, BCI-IV 2A, and BCI-IV 2B), setting new state-of-the-art values and showing the robustness of our framework in EEG representation learning. The source code of our paper is publicly available at https://github.com/guangyizhangbci/EEG_Riemannian.


翻译:为了学习空间信息,我们的模型首先在里曼多管线上获得了里曼纳平均值和距离空间常识矩阵的距离。然后我们将空间信息投射到厄克林德纳空间。随后,我们用两个完全连接的层来学习空间信息嵌入。此外,我们建议的方法通过不同电文和对数能量频谱密度特征学习时间信息,从欧克利德空间的 EEG 信号中提取,使用一个深长的短期内存网络和软关注机制。为了将空间和时间信息结合起来,我们采用了有效的聚合战略,学习了用于嵌入决策特定特征的注意权重。我们评估了我们关于四个广受欢迎的电子环境组相关任务,特别是情感识别、警惕估计和汽车图像分类的拟议框架,其中包括各种新任务,如双轨分类、多级分类和回归。我们拟议的结构在一次公开数据设置的州-亚基域/亚基域数据库中展示了我们州-州-亚基域/亚基数据格式框架。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月24日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
17+阅读 · 2020年11月15日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月24日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员