Sign language is a beautiful visual language and is also the primary language used by speaking and hearing-impaired people. However, sign language has many complex expressions, which are difficult for the public to understand and master. Sign language recognition algorithms will significantly facilitate communication between hearing-impaired people and normal people. Traditional continuous sign language recognition often uses a sequence learning method based on Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM). These methods can only learn spatial and temporal features separately, which cannot learn the complex spatial-temporal features of sign language. LSTM is also difficult to learn long-term dependencies. To alleviate these problems, this paper proposes a multi-view spatial-temporal continuous sign language recognition network. The network consists of three parts. The first part is a Multi-View Spatial-Temporal Feature Extractor Network (MSTN), which can directly extract the spatial-temporal features of RGB and skeleton data; the second is a sign language encoder network based on Transformer, which can learn long-term dependencies; the third is a Connectionist Temporal Classification (CTC) decoder network, which is used to predict the whole meaning of the continuous sign language. Our algorithm is tested on two public sign language datasets SLR-100 and PHOENIX-Weather 2014T (RWTH). As a result, our method achieves excellent performance on both datasets. The word error rate on the SLR-100 dataset is 1.9%, and the word error rate on the RWTHPHOENIX-Weather dataset is 22.8%.


翻译:手语是一种美丽的视觉语言,也是说话和听力障碍者使用的主要语言。然而,手语有许多复杂的表达方式,公众难以理解和掌握。手语识别算法将大大便利听力障碍者和正常人之间的交流。传统的连续手语识别法通常使用基于进化神经网络(CNN)和长短期内存网络(LSTM)的序列学习方法。这些方法只能分别学习空间和时间特征,无法学习手语复杂的空间时空错误。LSTM也很难学习长期依赖性。为了缓解这些问题,本文提出多视角空间时空持续手语识别网络。手语识别算法将大大便利听力障碍者和正常人之间的交流。传统的手语识别算法由三部分组成。第一部分是多视角空间-时空功能提取网络(MSTM),它可以直接提取 RGB 和骨架数据的空间-时空特性;第二个方法是一个基于变换语言的手势语言网络,可以学习长期依赖性能;第三个是100天空数据系统数据转换率(SHO)的精度系统,这是SSSIMTERS-ral Ralalalalalalalalalalalervialalalal 。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年1月26日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员