We propose a new adaptive hypothesis test for inequality (e.g., monotonicity, convexity) and equality (e.g., parametric, semiparametric) restrictions on a structural function in a nonparametric instrumental variables (NPIV) model. Our test statistic is based on a modified leave-one-out sample analog of a quadratic distance between the restricted and unrestricted sieve NPIV estimators. We provide computationally simple, data-driven choices of sieve tuning parameters and Bonferroni adjusted chi-squared critical values. Our test adapts to the unknown smoothness of alternative functions in the presence of unknown degree of endogeneity and unknown strength of the instruments. It attains the adaptive minimax rate of testing in $L^2$. That is, the sum of its type I error uniformly over the composite null and its type II error uniformly over nonparametric alternative models cannot be improved by any other hypothesis test for NPIV models of unknown regularities. Data-driven confidence sets in $L^2$ are obtained by inverting the adaptive test. Simulations confirm that our adaptive test controls size and its finite-sample power greatly exceeds existing non-adaptive tests for monotonicity and parametric restrictions in NPIV models. Empirical applications to test for shape restrictions of differentiated products demand and of Engel curves are presented.
翻译:我们提出了一种新的自适应假设检验方法,用于在非参数工具变量(NPIV)模型中对结构函数的不等式(例如单调性、凸性)和等式(例如参数化、半参数化)限制进行检验。我们的检验统计量基于一个修改过的样本留一法,使用筛选 NPIV 估计量的受限和不受限之间的二次距离。我们提供了计算简单、数据驱动的筛选调参和 Bonferroni 调整卡方临界值的选择方案。我们的检验可以适应未知的光滑度、内生性程度和工具变量的未知强度,从而实现了 $L^2$ 的自适应极小最大检验速率。也就是说,它在复合零假设的类型 I 错误和非参数交替模型的类型 II 错误上的总和,不能被其他非参数工具变量模型的假设检验所超越。通过反演自适应检验方法,可以获得 $L^2$ 中的数据驱动置信区间。模拟结果证实,我们的自适应检验可以控制大小,并且其有限样本功率远远超过现有的非自适应检验方法,用于在 NPIV 模型中进行单调性和参数限制的检验。我们还介绍了用于对分化产品需求和 Engel 曲线的形状限制进行检验的实证应用。