The capacity of a discrete-time model of optical fiber described by the split-step Fourier method (SSFM) as a function of the signal-to-noise ratio $\text{SNR}$ and the number of segments in distance $K$ is considered. It is shown that if $K\geq \text{SNR}^{2/3}$ and $\text{SNR} \rightarrow \infty$, the capacity of the resulting continuous-space lossless model is lower bounded by $\frac{1}{2}\log_2(1+\text{SNR}) - \frac{1}{2}+ o(1)$, where $o(1)$ tends to zero with $\text{SNR}$. As $K\rightarrow \infty$, the inter-symbol interference (ISI) averages out to zero due to the law of large numbers and the SSFM model tends to a diagonal phase noise model. It follows that, in contrast to the discrete-space model where there is only one signal degree-of-freedom (DoF) at high powers, the number of DoFs in the continuous-space model is at least half of the input dimension $n$. Intensity-modulation and direct detection achieves this rate. The pre-log in the lower bound when $K= \sqrt[\delta]{\text{SNR}}$ is generally characterized in terms of $\delta$. It is shown that if the nonlinearity parameter $\gamma\rightarrow \infty$, the capacity of the continuous-space model is $\frac{1}{2}\log_2(1+\text{SNR})+ o(1)$. The SSFM model when the dispersion matrix does not depend on $K$ is considered. It is shown that the capacity of this model when $K= \sqrt[\delta]{\text{SNR}}$, $\delta>3$, and $\text{SNR} \rightarrow \infty$ is $\frac{1}{2n}\log_2(1+\text{SNR})+ O(1)$. Thus, there is only one DoF in this model. Finally, it is found that the maximum achievable information rates (AIRs) of the SSFM model with back-propagation equalization obtained using numerical simulation follows a double-ascent curve.


翻译:以分步 Fleier 方法(SSFM)描述的离散时间光纤模型的容量 {Fleier 方法 (SSFM) 由信号到音量的比例 $\ text{SNR}$ 和远方美元中的分块数量来计算。 如果 $\ geq\ text{SNR2/3} 美元和 $\ text{SNR}\ text{ {fror{{fr>, 由此产生的连续空间无损模型的能力受 $\ flec{xxx [SFFFFFM} (SSFFFM) 的制约, 那么, 与离散空间模型的 $1\\ txxxxxxxx 美元中的 $xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
21+阅读 · 2021年9月23日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月18日
Arxiv
0+阅读 · 2021年11月18日
Arxiv
0+阅读 · 2021年11月17日
Arxiv
0+阅读 · 2021年11月17日
Arxiv
0+阅读 · 2021年11月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员