Gaussian process regression (GPR) model is a popular nonparametric regression model. In GPR, features of the regression function such as varying degrees of smoothness and periodicities are modeled through combining various covarinace kernels, which are supposed to model certain effects. The covariance kernels have unknown parameters which are estimated by the EM-algorithm or Markov Chain Monte Carlo. The estimated parameters are keys to the inference of the features of the regression functions, but identifiability of these parameters has not been investigated. In this paper, we prove identifiability of covariance kernel parameters in two radial basis mixed kernel GPR and radial basis and periodic mixed kernel GPR. We also provide some examples about non-identifiable cases in such mixed kernel GPRs.
翻译:Gausian 进程回归( GPR) 模型是一种流行的非参数回归模型。 在 GPR 中, 回归函数的特征, 如不同程度的平滑度和周期性等, 通过将各种圆锥形内核(这些内核可以模拟某些效应) 进行模型化。 共变内核有未知的参数, 这些参数由EM- algorithm 或 Markov 链子 Monte Carlo 估算。 这些估计参数是推导回归函数特征的关键, 但是尚未对这些参数的可识别性进行调查 。 在本文中, 我们证明在两种半射基混合内核( GPR) 和 辐射基以及周期混合内核(GPR) 中共变内核参数的可识别性。 我们还提供了一些实例, 说明在这种混合内核子 GPR 中无法识别的案例 。